Предмет: Геометрия, автор: pilnoeoblako

Пожалуйста, не пишите в ответах, если не знаете чего-то или не понимаете. Подробное объяснение пожалуйста

Приложения:

Ответы

Автор ответа: orjabinina
2

Две окружности ,вписанные в угол ,касаются друг друга внешним образом .Центральный угол в 120° большей окружности  , составленный из радиусов проведенных в точки касания ,стягивает дугу  15 см. Найти длину малой окружности.

Объяснение:

Пусть ОА=ОМ=R , CM=CK=r .  По формуле длины дуги   L=\frac{\pi R\alpha }{180}    ,

15=\frac{\pi R*\ 120 }{180}  ⇒ R= \frac{45}{2\pi }  см.  По свойству отрезков касательных ∠АОР=60° .

Пусть СН⊥ОА , тогда ∠НСО=30°.

В ΔНСО по свойству угла 30° :    ОС=2*ОН ,   но   ОС=R+r , ОН=R-r  ,

тогда R+r=2(R-r)   →   r= \frac{1}{3} *R  →  r= \frac{1}{3}*\frac{45}{2\pi }=\frac{15}{2\pi } (см) .

Длина окружности С=2πr , тогда С=2π* \frac{15}{2\pi } =15 (см) .

Приложения:
Похожие вопросы