Предмет: Математика, автор: Livotkin

Продолжение той задачи для внука, помогите пожалуйста.

Приложения:

Пеппер: Пожалуйста, печатайте условие на клавиатуре или фотографируйте. Документ не открывается.
dyadyaTolya2450: внучок уже организовать списывание для себя не может что ли?

Ответы

Автор ответа: Аноним
1

Ответ:

1) 4

2) -2

3) -2

Пошаговое объяснение:

1. \dfrac{\lg81}{\lg3}

1) По формуле перехода к новому основанию \log_ab=\dfrac{\log_cb}{\log_ca}

в данном случае а = 3, b = 81, c = 10

\log_381

2) Представим 81 как 3⁴

\log_33^4

3) Вынесем степень как множитель \log_ab^c=c\cdot\log_ab

в данном случае а = 3, b = 3, c = 4

4\cdot\log_33

4) Заменим логарифм \log_aa=1

в данном случае а = 3

4\cdot1=4

ОТВЕТ 4

2. \log_34-\log_316+\log_3\dfrac49

1) По формуле \log_ab-\log_ac=\log_a\dfrac bc

в данном случае а = 3, b = 4, c = 16

\log_3\dfrac4{16}+\log_3\dfrac49

2) По формуле \log_ab+\log_ac=\log_abc

в данном случае а = 3, b = \frac4{16},  с = \frac49

\log_3\bigg(\dfrac4{16}\cdot \dfrac49\bigg)

3) Посчитаем

\log_3\bigg(\dfrac{4\cdot4}{16\cdot9}\bigg)=\log_3\dfrac{16}{16\cdot9}=\log_3\dfrac19

4) Заменим \dfrac19 на 3⁻²

\log_33^-^2

5) Вынесем степень как множитель \log_ab^c=c\cdot\log_ab

в данном случае а = 3, b = 3, c = -2

-2\cdot\log_33

6) Заменим логарифм \log_aa=1

в данном случае а = 3

-2\cdot1=-2

ОТВЕТ -2

3. 2\log_727-\log_781-2\log_721

1) Занесем множитель как степень c\cdot\log_ab=\log_ab^c

в данном случае c = 2, a = 7, b = 27

\log_727^2-\log_781-2\log_721

2) Занесем множитель как степень c\cdot\log_ab=\log_ab^c

в данном случае c = 2, a = 7, b = 21

\log_727^2-\log_781-\log_721^2

3) По формуле \log_ab-\log_ac=\log_a\dfrac bc

в данном случае а = 7, b = 27², c = 81

\log_7\dfrac{3^6}{3^4}-\log_721^2

5) Сократим дробь

\log_73^2-\log_721^2

6) По формуле \log_ab-\log_ac=\log_a\dfrac bc

в данном случае а = 7, b = 3², c = 21²

\log_7\dfrac{3^2}{21^2}

7) Сократим дробь

\log_7\dfrac{3^2}{21^2}=\log_7\dfrac{3^2}{3^2\cdot7^2}=\log_7\dfrac1{7^2}

8) Заменим \dfrac1{7^2} на 7⁻²

\log_77^-^2

9) Вынесем степень как множитель \log_ab^c=c\cdot\log_ab

в данном случае а = 7, b = 7, c = -2

-2\cdot\log_77

10) Заменим логарифм \log_aa=1

в данном случае а = 7

-2\cdot1=-2

ОТВЕТ -2

Похожие вопросы
Предмет: Другие предметы, автор: Serega3842
Предмет: Литература, автор: учёный478