дам 100 баллов, помогите пожалуйста
(6 задание)
[™] [™] [™] [™] 3 [™] [™] [™], применяя метод интегрирования по частям. [2]
b) Найдите площадь фигуры, ограниченную графиком функции y=-x(2)+4x, y=0, x=2
c) Закрашенная часть вращается вокруг оси ОХ на 360 градусов, образ тело вращения. Найдите точное значение объема тела вращения. 3]
Ответы
Ответ:
Объем фигуры, образованной в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной непрерывной кривой y = f(x) (a ≤ x ≤ b), Осью Ox и прямыми x= a и x = b, вычисляется по формуле:
Аналогично, объем фигуры, образованной в результате вращения вокруг оси Oy криволинейной трапеции, ограниченной непрерывной кривой y = φ(x) (c ≤ x ≤ d), Осью Ox и прямыми y= c и y = d, находится по формуле:
ПРИМЕР №1. Вычислить объемы фигур, образованных вращением площадей, ограниченных указанными линиями.
y2 = 4x; y = 0; x = 4.
Пределы интегрирования a = 0, b = 4.
ПРИМЕР №2. y2 = 4x; y = x
Выполним построение фигуры. Решим систему:
y2 = 4x
y = x
найдем точки пересечения параболы и прямой: O(0;0), A(4;4).
Следовательно, пределы интегрирования a = 0; b = 4. Искомый объем представляет собой разность объема V1 параболоида, образованного вращением кривой y2 = 4x , и о объема V2 конуса, образованного вращением прямой y = x:
V = V1 – V2 = 32π – 64/3 π = 32/3 π
см. также как вычислить интеграл онлайн
ПРИМЕР №3. Вычислить объем тела, полученного вращением вокруг оси Оx фигуры, ограниченной прямой y=x и параболой .
Найдем точки пересечения линий. Для этого решим уравнение . Получим x1=0, x2=1.
Рис. 2. Объем тела вращения.
Объем тела может быть вычислен по формуле , где
, f2(x)=x.
.
Ответ: .
см. также Площадь фигуры, ограниченной линиями: Площадь фигуры, ограниченной линиями