помогите с сочем
1. От пересечения прямых a и b образовались углы ∠1, ∠2, ∠3 и ∠4. Начертите рисунок и найдите углы, если известно, что сумма двух противоположенных углов равна 1500.
[4]
2. Точки A, B и C лежат на одной прямой. Известно что AB=4,1 см, АС=7,6 см, ВС=3,5 см. Какая из трех точек лежит между двумя другими?
[1]
3. Из вершины ∠АОВ=600 проведен луч ОС. Градусные меры углов ∠АОС и ∠СОВ относятся, как 2:3. Найдите эти углы.
[2]
4. Периметр прямоугольного треугольника равен 72 см. Найдите есго стороны, если они относятся как 3:4:5.
[3]
5. В тупоугольном треугольнике АВС, из вершины тупого ∠ В на сторону АС опущена высота ВD, из вершины А проведена биссектриса АК, а из С – медиана СМ. Известны следующие измерения: АС=10 см, ВС=9 см, МА=4 см, ∠ВАК=170.
Найдите 1) ∠ADB, 2) ∠А, 3) Периметр треугольника АВС.
[6]
Ответы
Ответ:
1. 75°, 105°, 75°, 105°.
2. Точка В лежит между А и С.
3. ∠АОС=24°; ∠СОВ=36°.
4. АВ=18 см; ВС=24 см; АС=30 см.
5. 1) 90°; 2) 34°; 3) 27 см.
Объяснение:
1. При пересечении двух прямых образуются две пары углов:
а) равные вертикальные;
б) Смежные, сумма которых равна 180°.
Сумма двух углов равна 150°. Значит каждый угол равен 150 °/2=75°.
Два других равны 180°-75°=105°.
***
2. АВ+ВС=АС; 4,1+3,5=7,6. Значит точка В лежит между А и С.
***
3. Пусть ∠АОС=2х. Тогда ∠СОВ=3х. Сумма этих углов равна 60°.
2х+3х=60°;
5х=60°;
х=12°;
∠АОС=2х=2*12=24°;
∠СОВ=3х=3*12=36°.
***
4. АВС - треугольник. Пусть катеты равны 3х см и 4х см. Тогда гипотенуза равна 5х см.
Р=АВ+ВС+АС;
3х+4х+5х=72 см.
12х=72;
х=6;
АВ=3х=3*6=18 см;
ВС=4х=4*6=24 см.
АС=5х=5*6=30 см.
***
5. 1) Раз BD - высота, то BD ⊥ AC и угол ADB=90°.
***
2) ∠A=∠BAK+∠KAC; ∠ВАК=17°.
AK- биссектриса ∠А. Значит ∠А=2*17=34°.
***
3) P ABC =AB+BC+AC;
AB=2*AM=2*4=8 см. (СМ-медиана делит сторону АВ на две равные части).
P ABC=8+9+10=27 см.