Предмет: Алгебра, автор: poseydonaminbro

В коробке 6 белых и 8 черных шаров.
1. Сколькими способами можно выбрать (достав) из коробки 6 шаров?
2.Сколько способов выбора хотя бы 4 белых шаров из уже выбранных 5 шаров?​

Ответы

Автор ответа: lizazaq17
2

Ответ:

2 162 160;

66 960

Объяснение:

1

Избавься от ограничений

ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

professormedvezonok

professormedvezonok

5 дней назад

Алгебра

5 - 9 классы

+20 б.

Ответ дан

В коробке 6 белых и 8 синих шаров. Сколько способов можно выбрать 6 шаров в коробке? Какие есть способы сделать хотя бы 3 белых шара из 6 выбранных шаров.

1

СМОТРЕТЬ ОТВЕТ

Войди чтобы добавить комментарий

Ответ

5,0/5

3

olga0olga76

отличник

76 ответов

1 тыс. пользователей, получивших помощь

Ответ:

2 162 160;

66 960.

Объяснение:

1)

необходимо выбрать 6 шаров любого цвета, соответственно неважен цвет и берём все шары вместе: 6+8=14 шаров — всего

1 шар можем выбрать 1 из 14, осталось 14-1=13 шаров, следовательно,

2-й шар выбираем 1 из 13, остаётся 12 шаров,

3-й — 1 из 12, остаётся 11 шаров,

4-й — 1 из 11, остаётся 10 шаров,

5-й — 1 из 10, остаётся 9 шаров и

последний, 6-й шар — можем выбрать 1 из 9.

Итого, количество способов выбрать 6 любых шаров из 14 (6 белых и 8 синих) =

= 14*13*12*11*10*9 = 2 162 160

2)

необходимо выбрать ХОТЯ БЫ 3 белых шара из 6 выбранных, то есть может быть выбрано 3 и > белых шара, но НЕ может быть <.

Следовательно:

может быть 6 шаров = 3 белых + 3 синих

или

6 шаров = 4 белых + 2 синих

или

6 шаров = 5 белых + 1 синих

или

6 шаров = 6 белых + 0 синих.

рассмотрим каждый вариант отдельно, а потом суммируем количество способов в каждом из вариантов:

всего дано 6 белых и 8 синих шаров.

1 вариант — 6 шаров = 3 белых + 3 синих

1-й (белый шар) мы можем выбрать 1 из 6 возможных, остаётся 6-1=5 белых шаров;

2-й (белый шар) — 1 из 5, остаётся 4 белых шара;

3-й (белый шар) — 1 из 4.

4-й (синий шар) — 1 из 8 возможных, остаётся 7 синих шаров;

5-й (синий шар) — 1 из 7, остаётся 6 синих шаров;

6-й (синий шар) — 1 из 6.

Итого способов: 6*5*4*8*7*6= 40 320.

2 вариант — 6 шаров = 4 белых + 2 синих

1-й (белый шар) мы можем выбрать 1 из 6 возможных, остаётся 6-1=5 белых шаров;

2-й (белый шар) — 1 из 5, остаётся 4 белых шара;

3-й (белый шар) — 1 из 4, остаётся 3 белых шара;

4-й (белый шар) — 1 из 3.

5-й (синий шар) — 1 из 8 возможных, остаётся 7 синих шаров;

6-й (синий шар) — 1 из 7.

Итого способов: 6*5*4*3*8*7= 20 160.

3 вариант — 6 шаров = 5 белых + 1 синих

1-й (белый шар) мы можем выбрать 1 из 6 возможных, остаётся 6-1=5 белых шаров;

2-й (белый шар) — 1 из 5, остаётся 4 белых шара;

3-й (белый шар) — 1 из 4, остаётся 3 белых шара;

4-й (белый шар) — 1 из 3, остаётся 2 белых,

5-й (белый шар) — 1 из 2;

6-й (синий шар) — 1 из 8 возможных.

Итого способов: 6*5*4*3*2*8= 5 760.

4 вариант — 6 шаров = 6 белых + 0 синих

1-й (белый шар) мы можем выбрать 1 из 6 возможных, остаётся 6-1=5 белых шаров;

2-й (белый шар) — 1 из 5, остаётся 4 белых шара;

3-й (белый шар) — 1 из 4, остаётся 3 белых шара;

4-й (белый шар) — 1 из 3, остаётся 2 белых шара;

5-й (белый шар) — 1 из 2 , остаётся 1 белый шар;

6-й (синий шар) — 1 из 1.

Итого способов: 6*5*4*3*2*1= 720.

ИТОГО = количество способов, полученных в варианте 1+ вариант 2 + вариант 3+вариант4=

= 6*5*4*8*7*6 + 6*5*4*3*8*7 +

+ 6*5*4*3*2*8 + 6*5*4*3*2*1 =

= 40 320 + 20 160 + 5 760 + 720 =

= 66 960

Похожие вопросы
Предмет: Математика, автор: Kiko2802