Даны векторы а=3р-q ,b=p-2a ,q=1,p=4,p^q=пи/4
Вычислить скалярное произведение векторов а и b
Ответы
Пошаговое объяснение:
a=3 p-2q, b=p+4q, где p q, |p| =1 |q| =1
найти.
а×b
a×b = (3p-2q)×(p+4q)=3p^2 + 12. p q - 2pq- 8 q^2= 3-8= -5
^2- это в квадрате
Даны векторы а=3р-q ,b=p-2a ,q=1,p=4,p^q=пи/4 .
Вычислить скалярное произведение векторов а и b.
Примем вектор p по оси Ох, а вектор q под углом 45 градусов к положительному направлению оси Ох.
Находим вектор а=3р-q. Этот вектор будет в 4-ой четверти.
Модуль а находим по теореме косинусов.
3p = 3*4 = 12. q = 1. ∠ = 45°.
|a| = √(12² + 1² - 2*12*1*(√2/2)) = √(145 - 12√2) ≈ 11,315009.
По этой же формуле находим угол от вектора а до оси Ох.
cos a = (12² + (√(145 - 12√2))² - 1²)/(2*12*√(145 - 12√2)) = 0,998045.
a = arc cos(0,998045) = 3,5829°.
Находим вектор b=p-2a. Этот вектор будет в 2-ой четверти.
Модуль b находим по теореме косинусов.
p = 4. 2a = 2*√(145 - 12√2) ≈ 22,63002.
Так как вектор р сохраняет своё направление, а вектор -2а направлен в противоположную сторону от вектора а, то в треугольнике угол между векторами будет равен углу а = 3,5829°.
|b| = √(4² + 22,63002² - 2*4*22,63002*0,998045) = 18,639513.
cos b = (4² + 22,63002² - 18,639513²)/(2*4*18,639513) = 0,99991.
b = arc cos(0,99991) = 0,76841°.
Так как векторы противонаправлены, то угол между ними равен 180 - 0,76841 = 179,23159 градуса или 3,128181 радиан.
Косинус его равен -0,99991.
Получаем ответ:
скалярное произведение векторов а и b равно |a|*|b|*cosb =
= 11,315009*18,639513*(-0,99991) = -210,8873.