Предмет: Алгебра, автор: Sonya9805

постройте график функции:
y=8-4x/x^2-2x.
помогите пожалуйста


Esperantisto2020: Запись функции точно такая? А то часто скобки забывают и функция может быть такой вот: (8-4х)/(х^2-2x). Мне не верится, что дана прям буквально такая функция, как написано.
Sonya9805: да, там была именно такая
Sonya9805: в любом случае, благодарю за ответ

Ответы

Автор ответа: Esperantisto2020
2

Ответ:

Объяснение:

y=8-\frac{4x}{x^2}-2x

На 0 делить нельзя. Область определения: (-∞;0)∪(0;∞)

\lim_{x \to +0} (8-\frac{4x}{x^2}-2x)=-\infty  \\ \lim_{x \to -0} (8-\frac{4x}{x^2}-2x)=\infty

Т.к х не равен 0, то точек пересечения с осью у нет. Находим точки пересечения с осью х.

8-\frac{4x}{x^2}-2x=8-\frac{4}{x}-2x=\frac{8x-4-2x^2}{x}\\ \frac{8x-4-2x^2}{x}=0\\8x-4-2x^2=0\\x^2-4x+2=0

Решаем квадратное уравнение, находим точки пересечения с осью х:

x_1=2-\sqrt{2} \\x_2=2+\sqrt{2}

Находим точки экстремума (производная равна нулю).

(8-\frac{4x}{x^2}-2x)'=(8-\frac{4}{x}-2x)'=\frac{4}{x^2}-2;\\ \frac{4}{x^2}-2=0\\ \frac{2}{x^2}=1\\x=\pm \sqrt{2};\ \ y(-\sqrt{2})=8+4\sqrt{2};\ \  y(2)=8-4\sqrt{2}

Для нахождения точек перегиба находим вторую производную

y''=(\frac{4}{x^2}-2)'= (4x^{-2}-2)'=-\frac{8}{x^3}

Вторая производная нигде не равна нулю, точек перегиба нет.

Горизонтальных асимптот нет. Вертикальная асимптота одна: х=0.

Ищем наклонную асимптоту:

k= \lim_{x \to \pm \infty} \frac{f(x)}{x}=  \lim_{x \to \pm \infty} (\frac{8}{x}-\frac{4}{x^2}-2 )=-2

b= \lim_{x \to \pm \infty} (f(x)}-k{x})=  \lim_{x \to \pm \infty} (8-\frac{4}{x}-2x+2x )=8

Наклонная асимптота есть:

y=-2x+8

Дальнейшее исследование проводим, заполняя таблицу (см. рис.1).

Приложения:
Похожие вопросы
Предмет: Українська мова, автор: fvfvuafm