Предмет: Алгебра, автор: Bedisbashkoi28

некоторое натуральное число в четвертой степени имеет 85 натуральных делителя (включая единицу и само число). сколько натуральных делителей имеет это число в седьмой степени?

Ответы

Автор ответа: Artem112
0

Пусть число записано в виде произведения степеней простых множителей:

m=a^xb^y...c^z, где a,\ b,\ ...,\ c\in\mathbb{P};\ x,\ y,\ ...,\ z\in\mathbb{N}

Тогда, число делителей этого числа определяется по формуле:

n_d(m)=(x+1)(y+1)...(z+1)

Рассмотрим некоторое число k. Пусть k^4 имеет 85 делителей. Разложим число 85 на множители:

85=5\cdot17

Заметим, что число 85 раскладывается на какие бы то ни было множители единственным образом.

Зная это, необходимо рассмотреть две ситуации.

1) Число делителей находилось как произведение из одного множителя (условное произведение):

n_d(k^4)=x+1=85

\Rightarrow x=84

Тогда, число k^4 имеет вид:

k^4=a^{84}

Найдем число k:

k=\sqrt[4]{a^{84}}

k=a^{21}

Найдем число k^7:

k^7=(a^{21})^7

k^7=a^{147}

Число делителей этого числа:

n_d(k^7)=147+1=148

2) Число делителей находилось как произведение из двух множителей:

n_d(k^4)=(x+1)(y+1)=5\cdot17

\Rightarrow x=4;\ y=16

Тогда, число k^4 имеет вид:

k^4=a^4b^{16}

Найдем число k:

k=\sqrt[4]{a^4b^{16}}

k=ab^4

Найдем число k^7:

k^7=(ab^4)^7

k^7=a^7b^{28}

Число делителей этого числа:

n_d(k^7)=(7+1)\cdot(28+1)=8\cdot29=232

Ответ: 148 или 232


Bublik2223: ..
Rusik236K: спс
PeskovA67S: спс)
Похожие вопросы