Предмет: Математика,
автор: korchagin200101
Найдите производную 0.4cos(2t+(pi/2))
Ответы
Автор ответа:
1
Ответ:
Рассмотрим cos(2t+П/2) как косинус суммы двух углов. А он равен произведению косинусов этих углов - произведение синусов этих углов.
Т.е получим, что cos(2t+П/2) =cos2t×cos(П/2) - sin2t×sin(П/2)=
=cos2t×0 - sin2t×1 = (-sin2t). Но не забудем, что у нас ещё остался множитель 0,4. Итак, ответ: 0,4×(-sin2t)=0,4sin2t.
Желаю Вам успехов!
Пошаговое объяснение:
Похожие вопросы
Предмет: Другие предметы,
автор: pbonze
Предмет: Другие предметы,
автор: ааббввггддее
Предмет: Русский язык,
автор: ЭндрНяшко
Предмет: История,
автор: anisa13
Предмет: Математика,
автор: OMG700