Внутри угла ABC, равного 60°, проведен луч ВM. Внутри
угла ABM проведен луч BK, угол ABM = 50°, угол KBC = 40°
Найдите угол между биссектрисами углов ABK и CBM.
Ответы
Ответ:
∠АВС = 60°, ∠АВМ = 50°
∠АВС = ∠АВМ + ∠МВС
∠МВС = ∠АВС - ∠АВМ = 60° - 50° = 10°
ВР - биссектриса ∠МВС ⇒ ∠МВР = ∠СВР = 10° : 2 = 5°
································································································
∠КВС = 40°
∠АВС = ∠КВС + ∠АВК
∠АВК = ∠АВС - ∠АВК = 60° - 40° = 20°
ВО - биссектриса ∠АВК ⇒ ∠АВО = ∠КОВ = 20° : 2 = 10°
································································································
∠КВС = 40°
∠КВС = ∠КВМ + ∠МВС
∠КВМ = ∠КВС - ∠МВС = 40° - 10° = 30°
………
Найдите угол между биссектрисами углов АВК и СВМ.
т.е. надо найти ∠ОВР
∠ОВР = ∠ОВК + ∠КВМ + ∠МВР = 10° + 30° + 5° = 45°
Объяснение:
Решение:
∠АВС = 60°, ∠АВМ = 50°
∠АВС = ∠АВМ + ∠МВС
∠МВС = ∠АВС - ∠АВМ = 60° - 50° = 10°
ВР - биссектриса ∠МВС → ∠МВР = ∠СВР = 10° : 2 = 5°
∠КВС = 40°
∠АВС = ∠КВС + ∠АВК
∠АВК = ∠АВС - ∠АВК = 60° - 40° = 20°
ВО - биссектриса ∠АВК → ∠АВО = ∠КОВ = 20° : 2 = 10°
∠КВС = 40°
∠КВС = ∠КВМ + ∠МВС
∠КВМ = ∠КВС - ∠МВС = 40° - 10° = 30°
∠ОВР = ∠ОВК + ∠КВМ + ∠МВР = 10° + 30° + 5° = 45°
Ответ: 45°