Предмет: Алгебра, автор: shuhrathusanovich

1. Определите знаки коэффициентов уравнения параболы
у = ах2 + bx + c, если:
1) ветви параболы направлены вверх, абсцисса ее вершины
отрицательна, а ордината положительна;
помогите умоляю пожалуйста​

Ответы

Автор ответа: ZlataSergeeva2000
51

Ответ:

Если а > 0;   b > 0;   c > 0;

Объяснение:

у = а(х² + b/a x + c/a )

y = a(x² + 2(b/(2a)) + b²/(4a²)) - b²/(4a²)+c/a

y = a(x + b/(2a))² -  b²/(4a²)+c/a

1) Ветви параболы направлены вверх, если а > 0

2) Aбсцисса вершины параболы отрицательна, если b/(2a) > 0,

при а > 0 получаем b > 0

3) Ордината вершины параболы положительна, если b²/(4a²)+c/a > 0.

Поскольку b²/(4a²) > 0 и a > 0, получаем c > 0

Например:

у = 5х² + 20х + 21

а = 5 > 0

b = 20 > 0

c = 21 > 0

Преобразуя, получаем

у = 5 (х + 2)² + 1

График - парабола, веточками верх.

Координаты вершины: х в = - 2; у в = 1


Creepuga: спс ))))))
fmehrangizf: а если параболы направлены вниз???
bikirovakamila63: спасибо
ZlataSergeeva2000: ветви параболы направлены вниз, если а < 0
Girly0523: Спасибо большое)
Похожие вопросы
Предмет: Українська мова, автор: vikhtinskayak
Предмет: Математика, автор: shamshat1968
Предмет: Химия, автор: Poooli1