Предмет: Алгебра, автор: Megakompot

доказать тождество (tgx-ctgx)tg2x=-2

Ответы

Автор ответа: Jeremy77
0


tgx*tg2x-ctgx*tg2x=sinxsin2x/cosxcos2x-cosxsin2x/sinxcos2x - приводим дроби к общему знаменателю:

(sin^2xsin2x-cos^2xsin2x)/sinxcosxcos2x - вынесем sin2x за скобку и представим cos2x=cos^2x-sin^2x:

2sinxcosx(sin^2x-cos^2x)/sinxcosx(cos^2x-sin^2x) - сокращаем на sinxcosx:

2(sin^2x-cos^2x)/(cos^2x-sin^2x) - из любой скобки выносим -1, после этого скобки сократятся и останется -2.

Это тождество справедливо для всех икс, кроме x=п/4 - при таком значении выражение слева будет неопределенно! (ноль*бесконечность).

Похожие вопросы
Предмет: Геометрия, автор: natawabakieva
Предмет: Геометрия, автор: Nurik957
Предмет: Химия, автор: karpovakarpova