Предмет: Алгебра, автор: nikpro2003

Найти наибольшее и наименьшее значение функции y= 3 sin x cos x +1. Подробно

Ответы

Автор ответа: Artem112
4

y= 3\sin x\cos x +1

Преобразуем выражение следующим образом:

y= \dfrac{3}{2}\cdot2 \sin x\cos x +1

Воспользуемся формулой синуса двойного угла:

y= \dfrac{3}{2}\sin 2x+1

Зная, что синус принимает значения из отрезка от -1 до 1, оценим заданное выражение:

-1\leq \sin 2x\leq 1

\dfrac{3}{2}\cdot(-1)\leq \dfrac{3}{2}\cdot\sin 2x\leq \dfrac{3}{2}\cdot1

-\dfrac{3}{2}\leq \dfrac{3}{2}\sin 2x\leq \dfrac{3}{2}

-\dfrac{3}{2}+1\leq \dfrac{3}{2}\sin 2x+1\leq \dfrac{3}{2}+1

-\dfrac{1}{2}\leq \dfrac{3}{2}\sin 2x+1\leq \dfrac{5}{2}

Значит, наименьшее значений функции равно -\dfrac{1}{2}, а наибольшее значение функции равно \dfrac{5}{2}.


Bublik2223: ..
Rusik236K: спс
PeskovA67S: спс)
Похожие вопросы