Предмет: Алгебра, автор: watherlo

при каких a уравнение имеет единственное значение
| x+2 | - | 2x-a | =4

Ответы

Автор ответа: KayKosades
1

Ответ:

a=-12 и a=4

Объяснение:

Первый модуль обращается в ноль при x=-2, второй - при x=\frac{a}{2}.

Пусть сначала

\frac{a}{2} =-2\\a=-4

Тогда уравнение принимает вид |x+2|=-4 и, очевидно, не имеет решений.

Пусть теперь

\frac{a}{2} >-2

a>-4

Если x \in [\frac{a}{2} ;+\infty), то оба модуля раскрываются с плюсом и уравнение принимает вид:

x+2+a-2x=4\\x=a-2

Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если a удовлетворяет системе неравенств

\left \{ {{a-2\geq \frac{a}{2}  } \atop {a>-4}} \right.

Решение системы: a\geq 4

Если x \in [-2 ;\frac{a}{2}), то уравнение принимает вид

x+2+2x-a=4\\x=\frac{a+2}{3}

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ {{-2\leq \frac{a+2}{3} <\frac{a}{2}} \atop {a>-4}} \right.

Решение системы: a>4

Пусть, наконец, x \in (-\infty ;-2). Тогда уравнение принимает вид

-2-x+2x-a=4\\x=a+6

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ { a+6<-2} \atop {a>-4}} \right.

Эта система не имеет решений.

Теперь пусть \frac{a}{2} <-2, то есть a<-4.

Если x\in[-2; +\infty), то

x+2-2x+a=4\\x=a-2

Система:

\left \{ { a-2\geq -2} \atop {a<-4}} \right.

Нет решений.

Если x\in[\frac{a}{2} ; -2), то

-2-x-2x+a=4\\x=\frac{a-6}{3}

Система:

\left \{ {{\frac{a}{2} \leq \frac{a-6}{3} <-2} \atop {a<-4}} \right.

Решение системы: a\leq -12

И наконец, если x \in (-\infty ;-\frac{a}{2} ), то

-x-2+2x-a=4\\x=a+6

Система:

\left \{ {{a+6<\frac{a}{2} } \atop {a<-4}} \right.

Решение: a<-12

Из вышесказанного очевидно, что

При a\in(-\infty; -12) - два решения

При a=-12 - одно решение

При a\in(-12; -4) - нет решений

При a\in[-4; 4) - нет решений

При a=4 - одно решение

При a\in(4; +\infty) - два решения

Таким образом, уравнение имеет одно решение при a=-12 и a=4

Похожие вопросы
Предмет: Физика, автор: СИНЕВО