Докажите, что ABCD - параллелограмм. Только №1; №5; №7. (С объяснениями).
Ответы
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.