Предмет: Алгебра, автор: Katowice2014

ДАЮ 15 баллов!Велосипедист ехал по грунтовой дороге со скоростью 11 км/ч, а затем по шоссе. По шоссе
он проехал на 14 км больше, чем по грунтовой дороге, и ехал на 5 км/ч быстрее. Сколько
минут он ехал по шоссе, если вся поездка заняла ровно два часа?
Запишите решение и ответ.​

Ответы

Автор ответа: sangers1959
20

Объяснение:

Пусть по грунтовой дороге велосипедист проехал х км.   ⇒

По шоссе он проехал - (х+14) км.

Скорость велосипедиста  по грунтовой дороге 11 км/ч,

а скорость велосипедиста по шоссе - 11+5=16 (км/ч).

\frac{x}{11} +\frac{x+14}{16} =2\ |*176\\16x+11x+154=352\\27x=198\ |:27\\x=\frac{198}{27}=\frac{22}{3}=7\frac{1}{3}   \ \ \ \ \Rightarrow\\

Таким образом, погрунтовой дороге велосипедист проехал 7¹/₃ км.  ⇒

По шоссе он проехал 7¹/₃+14=21¹/₃ (км).

Время,  которое он затратил на путь по шоссе:

\frac{21\frac{1}{3} }{16} =\frac{\frac{64}{3} }{16} =\frac{64}{3*16} =\frac{4}{3} час.=\frac{4*60}{3}=80 мин.

Ответ: 80 минут велосипедист ехал по шоссе.

Похожие вопросы
Предмет: Математика, автор: AngryArsen228
Предмет: Геометрия, автор: Dina20037