Основою прямої призми є рівнобедрений трикутник з кутом a при основі і радіусом вписаного кола r. Діагональ бічної грані, що проходить через основу рівнобедреного трикутника, нахилена до площини основи під кутом y . Позначте які з наведених чотирьох тверджень правильні 1. Площина, що проходить через бічне ребро призми і уентр кола, вписаного в основу, ділить двогранний кут при бічному ребрі призми пополам 2. Бічне ребро призми дорівнює 2r*ctg*a/2*tgy 3. Одна з сторін основи призми дорівнює r*ctg*a/2 4. Один з двогранних кутів при бічному ребрі призми дорівнює a
Ответы
" Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанной окружности r. Диагональ боковой грани, проходящей через основание равнобедренного треугольника, наклонена к плоскости основания под углом y . Отметьте, какие из приведенных четырех утверждений правильные
1. Плоскость, проходящая через боковое ребро призмы и уентр круга, вписанного в основание, делит двугранный угол при боковом ребре призмы пополам
2. Боковое ребро призмы равна 2r*ctg*a/2*tgy
3. Одна из сторон основания призмы равна r*ctg*a/2
4. Один из двугранных углов при боковом ребре призмы равна a"
Объяснение:
1) Т.к. центр вписанной окружности лежит в точке пересечения биссектрис, то плоскостью, проходящей через боковое ребро призмы и центр круга, вписанного в основание, будет плоскость АКК₁А₁ , где АК, А₁К₁-биссектрисы нижнего и верхнего оснований.
Поэтому 1 утверждение верное.
2) Боковое ребро найдем из ΔАСС₁ -прямоугольного : СС₁=АС*tgy.
АС найдем из ΔАОН :
ΔАВС-равнобедренный. В равнобедренном
треугольнике биссектриса ВН является высотой и
медианой .АК-биссектриса, значит ∠ОАН= .
АН= , 2АН=АС= =2r*ctg .
Получаем СС₁=2r*ctg *tgy.
Поэтому 2 утверждение верное.
3) 3 утверждение неверное , т.к. в п 2 найдена сторона основания АС=2r*ctg . а боковая сторона будет искаться через косинус или синус ΔАВН.
4)4 утверждение верное . Это двугранный угол , например САА₁В, т.к
АА₁⊥АС и АА₁⊥АВ и ∠ВАС=α