в равнобедренном треугольнике один из углов равен 1200, высота
проведенная к основанию равна 8 см. найдите боковую сторону
треугольника
Ответы
Ответ:
1) ΔАВС - равнобедренный, АВ=ВС , АС - основание , ∠В=120°,
∠А=∠С = (180- 120)/2 = 30 °- углы при основании равны.
2) АН =8 см - высота к боковой стороне АВ ⇒∠Н=90°⇒
ΔАНС - прямоугольный , АС- гипотенуза , АН и НС - катеты.
Из пункта 1) ∠С=30°.
Сторона , лежащая напротив угла в 30° равна половине гипотенузы:
АН = АС/2 ⇒ АС= 2 * АН
АС = 2*8= 16 см
Ответ: АС= 16 см - основание ΔАВС.
Объяснение:
Пусть дан рб треугольник АВС, с основанием АС.
СВ продлим вверх треугольника, тк высота АН =8 будет снаружи треугольника, тк АВС тупоугольный.
Рассмотрим Тр. АВН. Угол Н =90. внешний угол АВС=120 => угол НАВ=120-90=30.
Тогда НВ =половине АВ.
Пусть НВ=х, тогда АВ= 2х
Рассмотрим треугольники АВМ - ( ВМ - высота АВС к АС) и тр АВН.
АВ - общая,
Углы НАВ=ВАМ=30
Углы НВА=АВМ=60
=> треугольники равны => АМ =8 => АС=16.
Ответ:
Получится что 120 градусов это угол при вершине, а углы при основании будут равны по 30 градусов. Тупой угол естественно-120 градусов,из него (то есть из вершины) мы опускаем высоту. Получается два равных прямоугольных треугольника с общим катетом-высотой равному 8.
Зная, что катет прямоугольного треугольника лежащий напротив угла в 30 градусов равен половине гипотенузы, мы найдем боковую сторону
Объяснение: