Предмет: Геометрия,
автор: BabySanchez
В правильной шестиугольной призме ABCDEFA1B1F1E1F1 все ребра равны 1. Найдите длину вектора а)AC1 б)AD1
Приложения:
akaman32:
AC1=2, AD1=sqrt(5)
Ответы
Автор ответа:
34
Ответ:
AC₁=2
AD₁=√5
Объяснение:
1. Рассмотрим ΔАВС (см. рис. 1). Он равнобедренный с АВ=ВС=1 и ∠В=120° (как внутренний угол правильного шестиугольника). Опустим высоту ВО на АС. Получили два равных прямоугольных ΔАВО = ΔСВО с углами 60°, 30° и 90° (т.к. ВО в равнобедренном тр-ке есть биссектрисой).
По теореме Пифагора,
тогда АС=АО*2=
Рассмотрим ΔACC₁ (см. рис. 3). Он прямоугольный с двумя известными катетами
АС=√3, CC₁=1. Гипотенуза АС₁ является искомой величиной.
По теореме Пифагора:
2. Рассмотрим ΔACD. Он прямоугольный с двумя известными катетами
АС=√3, CD=1 (см. рис. 2). Найдем гипотенузу АD.
Рассмотрим ΔADD₁ (см. рис. 4). Он прямоугольный с двумя известными катетами
АD=2, DD₁=1. Гипотенуза АD₁ является искомой величиной.
По теореме Пифагора:
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: slavapruss
Предмет: Русский язык,
автор: arinaz100304ari
Предмет: Математика,
автор: ксюняняяя
Предмет: Математика,
автор: Tomiris0312