Предмет: Алгебра, автор: rtisaeva443

Решите пожалуйста очень прошу вас люди добрые ​

Приложения:

Ответы

Автор ответа: atamuradovaparvina
1

Ответ:

2){(3 \sqrt{3} )}^{2}  +  {( -  3 \sqrt{3}) }^{2} - 2  =  9 \times 3 + 9 \times 3 - 2 = 27 + 27 - 2 = 52 \\ 4){( - 5 \sqrt{2} )}^{2}  -  {( - 2 \sqrt{5}) }^{2}  - 4 = 25 \times 2 - 4 \times 5 - 4 = 50 - 20 - 4 = 26 \\ 6) \sqrt{0.87 \times 36 + 0.82 \times 36}  + 1.2 =  \sqrt{36(0.87 + 0.82)}  + 1.2 = 6 \times 1.3 + 1.2 = 9 \\ 8) \sqrt{ \frac{72}{ {176}^{2} -  {112}^{2}  } }  =  \sqrt{ \frac{72}{(176 - 112)(176 + 112)} }  =  \sqrt{ \frac{72}{64 \times 288} }  =  \sqrt{ \frac{36}{64 \times 144} }  =  \frac{6}{8 \times 12}  =  \frac{1}{16}  \\ 10) \sqrt{ \frac{ {65.5}^{2}  -  {15.5}^{2} }{ {13.5}^{2}  -  {11.5}^{2} } }  =  \sqrt{ \frac{(65.5 - 15.5)(65.5 + 15.5)}{(13.5 - 11.5)(13.5 + 11.5)} }  =  \sqrt{ \frac{50 \times 81}{2 \times 25} }  =  \sqrt{81}  = 9

2) \frac{ \sqrt{11} -  \sqrt{3}  }{ \sqrt{11} +  \sqrt{3}  }  -  \frac{ \sqrt{11}  +  \sqrt{3} }{ \sqrt{11}  -  \sqrt{3} }  =  \frac{ {( \sqrt{11} -  \sqrt{3} ) }^{2} -  {( \sqrt{11}  +  \sqrt{3} )}^{2}  }{( { \sqrt{11}) }^{2} -  {( \sqrt{3} )}^{2}  }  =  \frac{11 - 2 \sqrt{33} + 3 - 11 - 2 \sqrt{33}   - 3}{11 - 3}  =  \frac{ - 4 \sqrt{33} }{8}  =   - \frac{ \sqrt{33} }{2}

4) \frac{12 +  \sqrt{44} }{ 12 -  \sqrt{44} }  +  \frac{12 -  \sqrt{44} }{12 + \sqrt{44}  }  =  \frac{ {(12 +  \sqrt{44} )}^{2}  +  {(12 -  \sqrt{44}) }^{2} }{ {(12)}^{2} -  {( \sqrt{44} )}^{2}  } =  \frac{144 + 24 \sqrt{44} + 44 + 144 - 24 \sqrt{44} + 44  }{144 - 44}   =  \frac{376}{100}  = 3.76

4  {x}^{2}   + x - 1 = 0 \\  d  =  {b}^{2}  - 4ab \\ d = 1 - 4 \times ( - 1) \times 4 \\ d = 1 + 16 = 17 \\ x1 =  \frac{ - b +  \sqrt{d} }{2a}  =   \frac{ - 1 +  \sqrt{17} }{8}  \\ x2 =  \frac{ - b -  \sqrt{d} }{2a}  =  \frac{ - 1 -  \sqrt{17} }{8}

 {x}^{2}  + 6x + 9 = 0 \\ x1 + x2 =  - p \\ x1 \times x2 = q \\  \\ x1 + x2 =  - 6 \\ x1  \times x2 = 9 \\ x1 =  - 3 \\ x2 =  - 3

 {x}^{2}  + 2x + 17 = 0

нет решения

 {x}^{4}  - 5 {x}^{2}  + 4  =  0 \\  {x}^{2}  = t  \\   {t}^{2}  - 5t + 4 = 0 \\ t1 = 1 \\ t2 = 4 \\ \\  {x}^{2}  = 4 \\ x1 = 2 \\ x2 =  - 2 \\  \\  {x}^{2}  = 1 \\ x3 = 1 \\ x4 =  - 1

 {(x + 3)}^{2}  -  |x + 3|  - 30 = 0 \\ x + 3 = t \\  {t}^{2}  -  |t|  + 30 = 0 \\  {t}^{2}  - t - 30 = 0 \\ t \geqslant 0 \\ t1 =  - 5 < 0 \\ t2 = 6 > 0 \\ t = 6 \\  \\  {t}^{2}  - ( - t) - 30 = 0 \\ t < 0 \\ t1 = 5 > 0 \\ t2 = -  6 < 0 \\ t =  - 6 \\  \\ x + 3 = 6 \\ x = 3 \\  \\ x + 3 =  - 6 \\ x  =  - 9

x - 12 \sqrt{x}  + 35 = 0 \\ 12 \sqrt{x}  = x + 35 \\  {(12 \sqrt{x}) }^{2}  =  {(x + 35)}^{2}  \\ 144x =  {x}^{2}  + 70x + 1225  \\ 144x -  {x}^{2}  - 70x - 1225 = 0 \\  {x}^{2}  - 74x + 1225 = 0 \\ x1 = 25 \\ x2 = 49

Похожие вопросы
Предмет: Английский язык, автор: olesyasofronova
Предмет: ОБЖ, автор: Re88
Предмет: Математика, автор: крис787