Предмет: Математика, автор: antonl85

Помогите решить, с рисунком.

AB перпендикулярна плоскости альфа. M и K произвольные точки плоскости альфа. Докажите, что AB перпендикулярна MK.

Ответы

Автор ответа: megrelirachel
0
Прямая является перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей на этой плоскости.
По условию, АВ перпендикулярна плоскости α и пересекает ее в точке О.
М и К, произвольные точки плоскости, соединяем и получаем отрезок МК, принадлежащий плоскости α.
Через точку О проводим прямую с, параллельную отрезку МК и проходящую через точку О.
По определению перпендикулярности прямой к плоскости, Прямая с образует с прямой АВ угол равный 90°=> прямая с перпендикулярна прямой АВ.
Лемма: Если одна из двух параллельных прямых перпендикулярна 3-ей прямой, то вторая прямая тоже перпендикулярна этой прямой.
     Если с || [MK], c⊥ AB, то АВ ⊥ [MK], что и требовалось доказать.
Рисунок во вложении
Приложения:
Похожие вопросы
Предмет: Геометрия, автор: Аноним