Предмет: Геометрия, автор: Аноним

в остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и АС пересекаются в точке О и ОА=8 см. найдите площадь треугольника ОВС, если угол ОВС= 60градусов. решите пожалуйста, срочно надо!

Ответы

Автор ответа: IUV
0
серединные перпендикуляры пересекаются в центре описанной окружности
это значит, что АО=ВО=СО=8см
треугольник ОВС - равносторонний со стороной 8 см
его площадь 8*8*sin(pi/3)*1/2=16*корень(3)
Автор ответа: volodyk
0
Решаю, но мне что-то не нравится. точка О - центр описанной окружности, которая находится на пересечении серединных перпендикуляров, ОА=ОВ=ОС=8, треугольник ОВС, угол ОВС=60, треугольник равнобедренный, уголОВС=уголОСВ=60, уголВОС=180-60-60=60, треугольник ОВС равносторонний, ОВ=ОС=ВС, площадьОВС=сторона в квадрате*корень3/4=8*8*корень3/4=16*корень3
Похожие вопросы
Предмет: Алгебра, автор: Sejera
Предмет: Обществознание, автор: lyudmilajones