Предмет: Математика, автор: nina973027

Даня задумал натуральное число, которое делится на би имеет ровно 6 делителей.
Какое число мог задумать Даня? Укажите все возможные варианты.​


Аноним: 18 делится на 6 и имеет 6 делителей: 1, 2, 3, 6, 9, 18
nina973027: спасибо

Ответы

Автор ответа: DNHelper
1

Ответ:

12, 18

Пошаговое объяснение:

Так как число делится на 6, в его разложении на простые множители должна входить хотя бы одна двойка и хотя бы одна тройка. Пусть число имеет вид x=2^{k_1}\cdot 3^{k_2}\cdot 5^{k_3}\cdot\ldots Тогда количество его делителей равно 6=(k_1+1)(k_2+1)(k_3+1)\ldots Учитывая, что степени двойки и тройки не меньше 1, k_1+1\geq 2, k_2+1\geq 2. Если в числе есть хотя бы ещё один простой множитель, отличный от 2 и 3, то число делителей не меньше 2 * 2 * 2 = 8 > 6. Значит, число содержит только множители 2 и 3.

Так как 6 = 2 * 3, либо k₁ = 1, k₂ = 2, либо k₁ = 2, k₂ = 1. В первом случае x = 2·3² = 18, во втором — x = 2²·3 = 12.

Похожие вопросы
Предмет: Математика, автор: Кекоша