Предмет: Математика,
автор: igorShap
Старик Хоттабыч придумал набор из n различных натуральных чисел таких, что все, кроме одного числа, делятся на 2, все, кроме двух чисел, делятся на 3, . . . , все, кроме n−1 чисел, делятся на n. Для какого наибольшего значения n это возможно?
Guerrino:
разве есть ограничение сверху?
Ответы
Автор ответа:
4
Решение:
Представим, что получилось собрать такой набор из чисел, причем больше или равно .
По условию, ровно число делится на ("все, кроме одного числа, делятся на "), и ровно чисел делятся на ("все, кроме двух чисел, делятся на "). Это означает, что на могут делиться максимум числа (когда все числа, делящиеся на также делятся на ), а минимум - числа (когда в наборе есть одно число, делящееся на , но не делящееся на ).
Но нам сказано, что на должны делиться ровно чисел, а остальные чисел на не делятся. Но выходит, что на не делятся либо числа, либо числа (но не чисел).
Значит, - такое невозможно.
При этом уже имеет место быть (во всяком случае, мне так кажется). В этом случае набор чисел будет, например, такой: .
Ответ: n = 5 .
Похожие вопросы
Предмет: Русский язык,
автор: daria1988
Предмет: Русский язык,
автор: alisa854577
Предмет: Русский язык,
автор: Lera524
Предмет: Математика,
автор: юраcик
Предмет: Биология,
автор: Slastёиа