Учитель изобразил на доске выпуклый многоугольник и попросил учеников оценить сумму его углов. Ваня сказал, что сумма
углов многоугольника меньше 600°; Веня — что сумма углов многоугольника меньше 700°; Женя — что сумма углов многоугольника меньше 800°. Учитель ответил, что прав только один из них.
Докажите, что многоугольник, изображённый учителем, является
шестиугольником.
Ответы
Прав Женя
Если бы был прав Ваня, то утверждения остальных тоже были бы верными, т. к. x<600<700<800
Если бы был прав Веня, то был бы прав Женя, так как x<700<800
Сумма углов шестиугольника - 720 градусов. 720<800 - утверждение Жени верно
Ответ:
Прав только Женя.
Объяснение:
1.
Допустим, что прав Ваня, кото
рый сказал, что сумма углов <
600°. Но 600°<700°<800°
Из истинности утверждения Ва
ни следует истинность утверж
дений еще двух мальчиков:
тогда правы и Веня и Женя, что
противоречит условию, так как
прав только один человек.
Допущение неверно!
2.
Допустим, прав Веня,
который утверждает, что сумма углов <
700°. Но 700°<800°. Из истин
ности утверждения Вени следу
ет истинность утверждения еще одного человека, тогда прав
и Женя: вновь получено проти
воречие.
Допущение неверно!
3.
Допустим, прав Женя, который
считает, что сумма углов <800°
Тогда оценочные утверждения
Вани и Вени неверны:
действительно, из истинности
утверждения Жени НЕ следует
истинность утверждений Вани
и Вени. Прав только один чело
век и его зовут Женя. Получен
ный вывод не противоречит ус
ловию, значит, допущение вер
ное.
ВЫВОД: прав только Женя.
Формула суммы углов выпукло
го n-угольника:
180×(n-2) ,
где n - число сторон.
Если n=6, то сумма углов шес
тиугольника 720°, что подтвер
ждает правоту Жени.