Предмет: Алгебра, автор: akakijsyrvic

Можете с Объяснениям пожалуйста ​

Приложения:

Ответы

Автор ответа: mathgenius
3

Ответ: 1004 нуля, 4000 троек, 4001 единица.

Найдём число цифр 3.

Для этого удобно применить метод индукции.  Пусть  во всех числах От 1 до 10^k-1 , то есть k значное, есть x цифр 3. Найдём сколько цифр 3 находится во всех числах до 10^(k+1)-1 (k+1 значное) . Поскольку у нас есть всего 10(k+1)-ых (0-9) разрядов, а один из этих разрядов соответствует цифре 3,  то общее число троек равно : 10*x +10^(k+1)

Среди чисел от 0 до 9 только одна тройка. Тогда общее число троек от 0 до 99 :10*1 +10=20.  От  0 до 999 : 10*20+10^2=300 .

От 0 до 9999 : 10*300 +1000=4000.

Таким образом от 1 до 10000 : 4000 цифр 3. Для цифры 1 тот же самый принцип, что и с цифрой 3, только учитываем число 10000 , таким образом : 4001 единица.  Для нулей все немного сложнее. Нужно учитывать нули при пустых разрядах. Например : 4029.  При учете этих нулей можно легко ошибиться. Но я предлагаю использовать интересную обходную дорогу.  Всего в числах от 0 до 9999: 4000  цифр : 1,2,3...9 . Это понятно из вышеуказанного алгоритма.  А теперь посчитаем сколько всего в числах от 0 до 9999 вообще всех цифр!  Всего  10 однозначных, 90 двузначных , 900 трехзначных и 9000 четырехзначных.  Таким образом общее число цифр :10 +90*2 +900*3 +9000*4 =38890

Таким образом цифру 0 написали :

38890 - 4000*9 = 2890

В числах от 1 до 10000 : 2893


mathgenius: В нулях ошибся. Там все чуточку сложнее. Cейчас исправлю ответ
mathgenius: За что лучший ответ? С нулями тут все очень запутанно. Ответ неверный. Надо додумать.
mathgenius: Теперь все нормально
mathgenius: *** Забыл поменять в ответе. Ответ: 2893 нуля, 4000 троек, 4001 единица. Если есть возможность, отправьте кто нибудь на исправление.
Похожие вопросы
Предмет: Українська мова, автор: школьник12345678901