Предмет: Геометрия,
автор: Cate213
Вычислить площадь трапеции ABCD, если ее вершины.Лежат в точках
А(-1,1), B(-5,5), С(8,5), D(4,1) .
Ответы
Автор ответа:
0
Ответ: S= (13+5)*4/2=36 ед2
Объяснение:
Заметим, что поскольку Ya=Yd=1 и Yb=Yc=5, то
AD II BC , то есть AD и BC являются основаниями трапеции.
Найдем длины сторон трапеции.
АВ= sqrt((Xb-Xa)^2+(Yb-Ya)^2)= sqrt(16+16)=4*sqrt(2)
BC=sqrt(169+0)=13
CD=sqrt(16+16)=4*sqrt(2)
AD=sqrt(25-0)=5
Итак имеем равнобедренную трапецию с боковыми сторонами =4*sqrt(2) и основаниями равными 13 и 5.
Проведем из точки А перпендикуляр на основание ВС- отрезок АН
Тогда ВН= (BC-AD)/2= (13-5)/2=4
Тогда высота АН= sqrt (AB^2-BH^2)=sqrt(32-16)=4
Теперь находим площадь трапеции:
S=(AD+BC)*AH/2
S= (13+5)*4/2=36 ед2
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Русский язык,
автор: Valtara
Предмет: Русский язык,
автор: iskogay
Предмет: Химия,
автор: danast63