Предмет: Алгебра, автор: Ифигения

Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента x: 1, 2, 3, 4, 5. Методом наименьших квадратов найти функцию y=f(x) в виде y= ax + h. Сделать чертеж.

Приложения:

Ответы

Автор ответа: Artem112
2

Искомая функция f(x)= ax + h.

Найдем значения искомой функции в заданных точках х:

f(1)=a\cdot1+h=a+h

f(2)=a\cdot2+h=2a+h

f(3)=a\cdot3+h=3a+h

f(4)=a\cdot4+h=4a+h

f(5)=a\cdot5+h=5a+h

Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию g(x):

g(1)=0.1;\ g(2)=0.8;\ g(3)=0.7;\ g(4)=2.8;\ g(5)=1.6

Составим функцию z(a;\ h), которая будет суммировать квадраты разностей значений функций f(x) и g(x) соответствующих аргументов:

z(a;\ h)=(a+h-0.1)^2+(2a+h-0.8)^2+(3a+h-0.7)^2+\\+(4a+h-2.8)^2+(5a+h-1.6)^2

Исследуем эту функцию на экстремум.

Найдем частные производные:

z'_a=2(a+h-0.1)+2(2a+h-0.8)\cdot2+2(3a+h-0.7)\cdot3+\\+2(4a+h-2.8)\cdot4+2(5a+h-1.6)\cdot5

z'_a=2a+2h-0.2+8a+4h-3.2+18a+6h-4.2+\\+32a+8h-22.4+50a+10h-16

z'_a=110a+30h-46

z'_h=2(a+h-0.1)+2(2a+h-0.8)+2(3a+h-0.7)+\\+2(4a+h-2.8)+2(5a+h-1.6)

z'_h=2a+2h-0.2+4a+2h-1.6+6a+2h-1.4+\\+8a+2h-5.6+10a+2h-3.2

z'_h=30a+10h-12

Необходимое условие экстремума: равенство нулю частных производных:

\begin{cases} 110a+30h-46=0\\ 30a+10h-12=0\end{cases}

Домножим второе уравнение на (-3):

\begin{cases} 110a+30h-46=0\\ -90a-30h+36=0\end{cases}

Складываем уравнения:

20a-10=0

a=0.5

Подставим значение а во второе уравнение исходной системы:

30\cdot0.5 +10h-12=0

15+10h-12=0

10h=-3

h=-0.3

Точка (0.5; -0.3) - предполагаемая точка экстремума.

Найдем вторые частные производные функции:

z''_{aa}=(110a+30h-46)'_a=110

z''_{ah}=(110a+30h-46)'_h=30

z''_{hh}=(30a+10h-12)'_h=10

Рассмотрим выражение:

\Delta=z''_{aa}z''_{hh}-(z''_{ah})^2=110\cdot10-30^2=200

Так как \Delta>0 и z''_{aa}>0, то точка (0.5; -0.3) является точкой минимума.

Значит, в точке (0.5; -0.3) функция z(a;\ h) имеет минимум.

Тогда, значения a=0.5 и h=-0.3 есть искомые коэффициенты функции f(x).

f(x)= 0.5x -0.3

Ответ: f(x)= 0.5x -0.3

Приложения:
Похожие вопросы
Предмет: Математика, автор: IsmagilovaIlina95