помогите пожалуйста с задачкой, темы: "треугольники"
Ответы
Ответ: 6(ед²)
Объяснение:
если стороны ∆MNP: стор∆АВС=1/3, то их площади будут иметь такие же пропорции: S∆MNP/S∆ABC=1/3
2/S∆ABC=1/3
S∆ABC=3×2
S∆ABC=6(ед²)
На сторонах треугольника АВС АВ, ВС, СА взяты соответственно точки М, N, P таким образом. что выполняется соотношение АМ:АВ=ВN:NB=СР:СА=1:3. Найдите площадь треугольника АВС, если площадь треугольника МNP=2.
———————
Ответ D) 6
Объяснение: Пусть АВ=с, ВС=а, АС=b
Т.к. короткие части равны 1/3 каждой стороны, то АМ=с/3, ВN=a/3, CP=b/3. Соответственно вторые части сторон равны по 2/3 от длины каждой.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны. α - угол между ними. Следствие из этой формулы:
Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.
Примем площадь ∆ АВС=Q.
Тогда Ѕ(МАР):Ѕ(АВС)=[(с/3)•2b/3]:c•b=Q•2/9
Аналогично вычисления площадей ∆ МВN и ∆ PNC дадут их величину Q•2/9 (проверьте)
Сумма площадей этих треугольников 3•Q•2/9=Q•2/3 =>
Q-2Q/3=2
Q/3=2 => Q=3•2=6 (ед. площади)