Предмет: Алгебра, автор: lrid

Найти производную y=tg(sin3x)

Ответы

Автор ответа: poluskinanton
0

Ответ:

Y = tg(sin 3x);

y '(x) = 1 /cos^2(sin 3x) * (sin 3x) ' = 3*cos 3x / cos^2(sin 3x)

Объяснение:

Автор ответа: fazerfut
1

Ответ:искомая производная выглядит следующим образом: y' = 3/cos(3x).

Объяснение:

Воспользуемся формулой для производной сложной функции: (g)h))' = (g(h)' * (h(x)'. Получим:

y' = (tg(sin(3x))' = 1/cos^2(3x) * (sin(3x))'.

Вновь применим вышеуказанную формулу:

y' = 1/cos^2(3x) * cos(3x) * (3x)' = 3/cos(3x).

Похожие вопросы
Предмет: Английский язык, автор: dilyara416