Предмет: Алгебра, автор: Аноним

(50 БАЛОВ)ОЧЕНЬ СРОЧНО!Побудуйте графік функції
у=|4х-3|
РАСПИШИТЕ ПОЖАЛУЙСТА КАК НА КАРТИНКЕ!!!

Приложения:

Ответы

Автор ответа: helenaal
1

     В образце задания показан способ построения графика линейной функции с модулем способом отражения отрицательной части графика функции, построенной без учета модуля,  относительно оси абсцисс .

у = |4x – 3|

    Строим график

у = 4х – 3

х   |   0  |  2  

у   |  -3  |   5

      Это прямая, пересекающая ось ординат в точке (0;-3) и ось абсцисс в точке (3/4; 0)/

     Поскольку заданная функция   у = |4x – 3|    содержит модуль, т.е. у ≥ 0, то все отрицательные значения функции у = 4х – 3  надо заменить на противоположные.

   Для этого берем, к примеру, значение у = -7 при х = -1 и симметрично переносим вверх, в точку у = 7 с той же абсциссой х =-1.

   Все отраженные точки будут лежать на прямой, соединяющей  перенесенную точку (-1; 7) с точкой (3/4; 0).

   Выделяем отраженную прямую и положительную часть у = 4х – 3

    График  у = |4x -3| построен.

Примечание. Другой способ, с раскрытием модуля, применяют чаще.  

у = |4x -3|

   Находим корень модуля, приравнивая модуль к 0  :

4х – 3 = 0

4х =3

х = 3/4

   В точке (3/4; 0) выражение, стоящее под знаком модуля, будет менять знак, и график заданной функции будет состоять из двух частей:

у = 4х – 3         при х ≥ 3/4  

у = - (4х – 3)     при х < 3/4

   Строим части:  

а)  у = 4х – 3    при х >=3/4  

х    | 3/4  | 2  

у    |   0   | 5

б)  у = -  (4х – 3) при х < 3/4

х | -1  | 0    

у  | 7  |3    

В приложении показан график и оба способа построения

 При построении с помощью подстановки значения х  непосредственно в у = |4x – 3|  можно пропустить точку х = 3/4, где у = 0 и получить неверный график, так как точки будут ложиться на одну прямую.

Приложения:
Похожие вопросы
Предмет: Математика, автор: ввл283