Равнобедренный прямоугольный
треугольник с гипотенузой
8√2
см вращается вокруг оси,
содержащей высоту этого
треугольника, проведенную из
прямого угла. Найти: а) объем
полученного конуса; б) площадь
его полной поверхности.
Ответы
Ответ:
а) 128√2 *π см³
б) 64 π см²
Пошаговое объяснение:
Сначало нужно найти катет данного треугольника. Его мы находим по теор. Пифагора. А также данный треугольник является равнобедренным, значит два катета являются равными, а также их противоположные углы равны 45°. Значит √2а² = с. ⇒ а = 8 см
теперь можно и найти высоту данного прямоугольного треуг. В этом случае она будет делить треугольник на ровные две части. Полученные две части тоже будут прямоугольными треугольниками, а также их углы как и в начальном треугольнике равны 45°. Получается что половина гипотенузы равна и высоте начального треугольника h=c/2=4√2 cм
а) В этом случае нам нужно найти объем конуса. Радиус этого конуса будет равен половине гипотенузы ⇒ r=c/2=4√2 cм
Чтобы найти объем конуса нам нужно воспользоватся данной формулой ⇒ V=1/3 * h * S
Площадь нижней окружности можно вычислить по данной формуле S=πr²=( 4√2 )² * π = 32π cм²
V= 1/3 * 4√2 * 32π cм² = 128√2*π*/3 см³
б) Чтобы найти площадь полной поверх. конуса нужно по отдельности вычислить площадь боковой поверхности и площадь основания конуса.
Sбок= πrl=32π см²
Sосн=32π см²
Sпол= 32π + 32π = 64π см²