Предмет: Математика,
автор: Lisa4569
ДАМ ВСЕ БАЛЛЫ, СРОЧНО
Петя и Вася играют в игру: они по очереди выбирают числа из набора {1, 2, 3,
4, 5, 6, 7, 8}, до тех пор, пока числа не закончатся. Затем каждый вычисляет
сумму выбранных чисел. Игрок выигрывает, если сумма его чисел – простое
число, а сумма чисел соперника – составное. В противном случае фиксируется
ничья. Петя делает ход первым. Существует ли выигрышная стратегия для
кого-то из игроков?
Ответы
Автор ответа:
0
Ответ:
Пошаговое объяснение:
Если второй игрок на своем ходе будет выбирать число той же четности, что и первый, то игра закончится всегда вничью. Значит для первого игрока выигрышной стратегии нет.
Похожие вопросы
Предмет: Русский язык,
автор: kgv1
Предмет: Русский язык,
автор: bogdanivanna
Предмет: Русский язык,
автор: kostomarovdan
Предмет: Алгебра,
автор: studip
Предмет: Геометрия,
автор: taktikyyy