Периметр параллелограмма равен 72 см, а его высоты относятся как 5:7. Найдите стороны параллелограмма.
Ответы
Ответ:
Объяснение:
(a+b)*2=72
a+b=36
Стороны можно представить через их соотношение: одна сторона = 5b/7; другая = 7b/7
5b/7+7b/7=36
12b/7=36
12b=36*7
12b=252
b=21 см
Тогда a=36-21=15 см
Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
Ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.