Предмет: Геометрия, автор: shipkov2004


все решите еще 100 балов накину
Можно пожалуйста очень срочно
Точка С лежит между точками А и В. Найдите длину отрезка АС, если АВ=8,5 см, ВС=4,6 см.
2. Биссектриса ВС угла АВD разбивает его на два угла, один из которых равен 25. Найдите величину угла АВD.
3. Один из смежных углов равен 114. Найдите величину второго.
4. . Найдите периметр равнобедренного треугольника, боковая сторона которого 6 см, а основание 4см
На рисунке отрезок МК параллелен стороне АС. Луч MN является биссектрисой угла ВМК. Найдите величину угла MNK.
6. В равнобедренном треугольнике АВС с основанием АС проведены биссектрисы АЕ и СД. Докажите, что треугольник АДС равен треугольнику СЕА.
7.В прямоугольном треугольнике острый угол относится к внешнему, не смежному с ним как 2:5. Найдите острые углы треугольника и его гипотенузу, если катет, лежащий напротив наименьшего острого угла равен 6 см.

Ответы

Автор ответа: yourlove06
1

1.

AC = 8,5 - 4,6 = 3,9 см.

AB - весь отрезок.

AC - часть отрезка.

BC - часть отрезка.

2.

угол CBD = углу ABC = 25°

угол ABD = CBD + ABC = 25° + 25° = 50°

3.

второй угол = 180° - первый угол = 180° - 114° = 66°

4.

P треугольника = 6 + 6 + 4 = 16 см.

5.

1) Рассмотрим треугольник АВС

По теореме о сумме углов треугольника найдем угол В.

Угол В = 180° - угол А - угол С = 180° - 80° - 40° = 60°

2) Угол ВМK = углу А (соответственные при МК || АС и секущей АВ)

Угол ВМK = 80°

3) Угол ВМN = углу MKN (т.к. MN  - биссектриса угла ВМК)

Угол ВМN = углу MKN = 80° : 2 = 40°

4) Рассмотрим треугольник ВМN

По теореме о сумме углов треугольника найдем угол МNВ.

Угол MNB = 180° - угол В - угол ВМN = 180° - 60° - 40° = 80°

5) Сумма углов MNB и MNK равна 180°, т.к. они смешные.

Отсюда угол MNK = 180° - угол MNB = 180° - 80° = 100°

Ответ: угол MNK = 100°

6.

Угол ДАС = углу ЕСА ( углы при основании ровнобедреного тркугольника АВС )

Угол ЕАС = углу ДСА ( Угол ДАС = углу ЕСА, а АЕ и СД - биссектрисы этих углов )

АС - общая сторона - из всего выше изложеного делаем вывод что треугольник АДС = треугольнику СЕА ( по стороне и двум прилегающим к ней углам )

7.

Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.

Пусть угол С=2х°, угол КАВ=5х°, угол В=90°,  тогда 2х+90=5х

3х=90;  х=30

угол С=30:2=60°;  угол А=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°

Катет ВС лежит против угла 30°, следовательно, он равен половине гипотенузы АС

АС=2ВС=12 см.

Похожие вопросы
Предмет: Русский язык, автор: 1vaa