Предмет: Геометрия, автор: turatbekov04

Пусть М-точка пересечения диагоналей выпуклого четырехугольника АВСД, в котором стороны АВ,АД и ВС равны между собой. Найдите угол СМД(в градусах), если известно,что ДМ=МС, а угол САВ не равен углу ДВА.

Ответы

Автор ответа: ryuchina05
5

Ответ:

Ответ

120°

Объяснение:

Решение

 Пусть  ∠ABD = ∠ADB = α, ∠BAC = ∠ACB = β.  По теореме о внешнем угле треугольника  ∠BMC = α + β.

 Через точку A проведём прямую, параллельную стороне CD. Пусть эта прямая пересекается с прямой DB в точке K. Треугольник AMK равнобедренный, так как он подобен равнобедренному треугольнику CMD. Значит,  ∠DK = DM + MK = CM + MA = CA,  то есть трапеция AKCD – равнобедренная. Поэтому  CK = AD = BC,  то есть треугольник BCK также равнобедренный (по условию точка K не совпадает с точкой B). Кроме того,

∠KCM = ∠ADM = α.  Рассмотрим два случая.

 1) Точка K лежит на диагонали DB. Тогда ∠KBC = ∠BKC = ∠KMC + ∠KCM = 2α + β.  Отсюда

180° = ∠BMC + ∠MBC + ∠MCB = (α + β) + (2α + β) + β = 3α + 3β.

 2) Точка лежит на продолжении DB за точку B. Тогда  ∠BKC = ∠KBC = ∠BMC + ∠BCM = α + 2β.  Отсюда

180° = ∠KMC + ∠MK + ∠KCM = (α + β) + (α + 2β) + α = 3α + 3β.

 Итак, в любом случае  α + β = 60°.  Следовательно,  ∠CMD = 180° – ∠KMC = 180° – (α + β) = 120°.

Похожие вопросы
Предмет: Қазақ тiлi, автор: байбулова
Предмет: География, автор: kyzya09
Предмет: Химия, автор: fyutk33