Исследуйте свойства функции с помощью производной и постройте схематически её график. Используйте не полный алгоритм исследования функции. (1. Найти область определения .2. Найти точки пересечения с осями координат. 3.Найти интервалы монотонности функции. 4. Найти точки экстремума. 5. Найти интервалы выпуклости-вогнутости функции. 6. Найти точки перегиба. 7. Построить схематический график функции.) Для удобного построения масштаб можно взять 2 клетки. *
Помогите пожалуйста
Ответы
Ответ:Отметь как лучший ответ))))
Объяснение:
1) Найти область определения функции;
Ограничений нет - х ∈ R (знаменатель не может быть равен нулю).
2) Исследовать функцию на непрерывность;
Непрерывна, так как нет точек разрыва функции.
3) Определить, является ли данная функция четной, нечетной;
f(-x) = ((-x)-3)²/((-x)² +9) = (x+3)²/(x² +9) ≠ f(-x) ≠ -f(-x).
Функция не чётная и не нечётная.
4) Найти интервалы функции и точки её экстремума ;
Находим производную функции.
y' = 6(x-3)(х+3)/(x² + 9)².
Приравняв её нулю (достаточно только числитель), имеем 2 корня:
х = 3 и х = -3.
Имеем 3 промежутка (-∞; -3), (-3; 3) и (3; ∞).
Находим знаки производной на этих промежутках.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -4 -3 0 3 4
y' = 0,0672 0 -0,66667 0 0,0672.
Отсюда получаем:
Функция возрастает на промежутках (-∞; -3), (3; +∞) и убывает на промежутке (-3; 3)
Экстремумов два:
- максимум в точке х = -3,
- минимум в точке х = 3.
5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции;
Находим вторую производную.
y'' = -12х(x² - 27)/(x² + 9)³.
Приравняв нулю, имеем 3 точки перегиба:
х = 0, х = √27 = 3√3 и х = -3√3.
6) Найти асимптоты графика функции.
Асимптота есть одна горизонтальная у =1.
График функции, таблица точек для его построения приведены в приложении.