Предмет: Геометрия,
автор: popl29
Даю 30 БАЛЛОВ
Основание пирамиды — равнобедренный треугольник с боковой стороной b и углом при вершине а. Все двугранные углы при основании пирамиды равны β. Найдите боковую поверхность пирамиды.
Ответы
Автор ответа:
6
Ответ:
Осталось найти боковую площадь.Она состоит из 2 равных равнобедренных треугольника с основанием b и еще одного равнобедренного с основанием ВС.
Основанием высоты пирамиды будет точка О, которая является центром вписанной окружности в ΔАВС,надо вычислить этот радиус-чтобы потом через него вычислить высоты боковых граней.
r=(BC/2)√((2b-BC)/(2b+BC))=b*cosβ*√((1-cosβ)/(1+cosβ))(вычисления я опустила)
Тогда высота боковых граней будет
KM=r/cosФ=b*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
S(бок)=(b+b+BC)*KM/2=(2b+2b*cosβ)*b*cosβ*√((1-cosβ)/(1+cosβ))/2cosФ=
=(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
S(пол)=S(осн)+S(бок)=b^2*sin2β/2+(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
Объяснение:
Лайк плиз!!!)))
popl29:
Можно рисунок?
Похожие вопросы
Предмет: Русский язык,
автор: lyusi1111s
Предмет: Другие предметы,
автор: lera9199
Предмет: Русский язык,
автор: irina20101
Предмет: Алгебра,
автор: marina25658
Предмет: Математика,
автор: KarolinaGrase