Предмет: Геометрия,
автор: annabronskih
Если медиана ВМ треугольника АВС равна половине стороны АС, то угол В ... А) острый; Б) прямой; В) тупой; Г) нельзя определить.
Просьба кратко объяснить)
Ответы
Автор ответа:
1
Точка пересечения медианы ВМ со стороной АС есть точка М, тогда получается, что точка М равноудалена от всех вершин треугольника. Т.е. является центром окружности, описанной около треугольника, если же продолжить ВМ на расстояние ВМ, за точку М и соединить полученную точку с вершинами А и С, то окажется, что диагонали у полученного четырехугольника равны и точкой пересечения делятся пополам. Это прямоугольник. Вывод треугольник АВС прямоугольный, в нем угол В прямой.
Похожие вопросы
Предмет: Русский язык,
автор: Melani12
Предмет: Українська мова,
автор: vika123669
Предмет: Русский язык,
автор: Lorandicus
Предмет: Алгебра,
автор: AaALlLEeENnNAaAaA