Предмет: Геометрия,
автор: asimsimackov
На сторонах BC и AD параллелограмма ABCD взяты точки M и K соответственно,AB=BM=KD,угол AMB=30 градусов.Найдите углы четырехугольника ABCK
Заранее спасибо
Ответы
Автор ответа:
0
Поскольку АВ = ВМ, то треуг-к АВМ равнобедренный, угол АМВ = МАВ = 30, тогда угол В = 120.
АВ = СД как противолежащие стороны параллелограмма, значит КД = СД.
Углы В = Д = 120 как противолежащие углы парал-ма.
Треуг-к СДК равнобедренный, углы СКД = КСД = 30.
Тогда угол АКС = 180 - 30 = 150.
Если у параллелограмма один из углов равен 120, то другой, прилегающий к этой стороне равен 180 - 120 = 60.
Значит угол ВСД = 60, тогда ВСК = 60 - 30 = 30
Урог ВАК = ВСД = 60.
Углы четырехугольника АВСК:
А = 60
В = 120
С = 30
К = 150.
АВ = СД как противолежащие стороны параллелограмма, значит КД = СД.
Углы В = Д = 120 как противолежащие углы парал-ма.
Треуг-к СДК равнобедренный, углы СКД = КСД = 30.
Тогда угол АКС = 180 - 30 = 150.
Если у параллелограмма один из углов равен 120, то другой, прилегающий к этой стороне равен 180 - 120 = 60.
Значит угол ВСД = 60, тогда ВСК = 60 - 30 = 30
Урог ВАК = ВСД = 60.
Углы четырехугольника АВСК:
А = 60
В = 120
С = 30
К = 150.
Похожие вопросы
Предмет: Английский язык,
автор: sergeyy352
Предмет: Математика,
автор: DEMONRET
Предмет: Биология,
автор: nellaklepko
Предмет: Математика,
автор: Glebus789