Предмет: Математика,
автор: kimminloc
Усі ребра правильної трикутної піраміди дорівнюють 3 см. Знайдіть лінійний кут двогранного кута при бічному ребрі піраміди.
Ответы
Автор ответа:
7
Если усі ребра правильної трикутної піраміди дорівнюють 3 см, то заданная пирамида - правильный тетраэдр.
У него все двугранные углы равны.
Для определения двугранного угла надо провести осевое сечение перпендикулярно ребру.
Линейный угол будет между апофемой А и её проекцией на основание, равной (1/3) высоты основания.
А = а*cos 30° = 3*(√3/2) = 3√3/2 (для правильного тетраэдра апофема равна высоте грани).
(1/3)А = √3/2.
Ответ: угол равен arc cos(√3/2/3√3/2) = arc cos(1/3) ≈ 70,53°.
Похожие вопросы
Предмет: Русский язык,
автор: uzakbai01
Предмет: Другие предметы,
автор: Вkоnтaкtе
Предмет: Қазақ тiлi,
автор: яна12шумихина
Предмет: Математика,
автор: anja21
Предмет: История,
автор: YANatduimnatys