Предмет: Алгебра, автор: vitja037

Помогите небольшие 2 задания
28-29

Приложения:

Ответы

Автор ответа: NNNLLL54
0

28)\; \; y\cdot y'=sin5x\; \; \; \to \; \; \; \dfrac{dy}{dx}=\dfrac{sin5x}{y}\\\\\\\int y\, dy=\int sin5x\, dx\\\\\dfrac{y^2}{2}=-\dfrac{1}{5}\cdot cos5x+C

29)\; \; \dfrac{y\, dy}{dx}=4-x^2\; \; ,\; \; y(0)=1\\\\\\\int y\, dy=\int (4-x^2)\, dx\\\\\dfrac{y^2}{2}=4x-\dfrac{x^3}{3}+C\; \; \; \to \; \; \; y^2=8x-\dfrac{2x^3}{3}+C\\\\y(0)=1:\; \; 1^2=2\cdot 0-\dfrac{2\cdot 0^3}{3}+C\; \; ,\; \; C=1\; \; \; \Rightarrow \\\\y^2=8x-\dfrac{2x^3}{3}+1\; \; \; ili\; \; \; \; y=\pm \sqrt{8x-\dfrac{2x^3}{3}+1}

Похожие вопросы