Предмет: Геометрия,
автор: paulperedery
Один из острых углов прямоугольного треугольника равен 42⁰. Найдите угол между высотой и биссектрисой ,проведенными из вершины прямого угла треугольника.
(С ОБЪЯСНЕНИЕМ ПОЖАЛУЙСТА :3)
Ответы
Автор ответа:
9
Ответ:
3 градуса
Объяснение:
- Пусть СН - высота, СL - биссектриса в треугольнике ABC с прямым углом С
- Рассмотрим треугольник СВН: в нём угол СНВ = 90° - т.к. СН перпендикулярно АВ. Тогда угол НСВ = 180 - 90 - 42 = 48° (сумма углов треугольника равна 180°).
- угол СНL = угол НСВ - угол LСВ. Угол LCB = 90°/2 = 45° - т.к. CL - биссектриса прямого угла.
- тогда угол СНL = 48°-45° = 3°
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: Аполошка
Предмет: Русский язык,
автор: kakawka2
Предмет: Русский язык,
автор: Прядкина
Предмет: Химия,
автор: GravityFalls777
Предмет: Математика,
автор: shlenova