Предмет: Геометрия, автор: lizarepko

Найдите площадь круга в писаного в равнобедреную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см.
СРОЧНО НАДО

Ответы

Автор ответа: cenay67
0

Ответ:

Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см

Объяснение:

АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см.   Пусть ВК⊥АМ , СР⊥АМ.

S(круга)=πr².  Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.

Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒

КР=6 см, АК=РМ=(12-6) :2=3 (см).

ΔАВК-прямоугольный, по т. Пифагора :

ВК=√(9²-3²)=√((9-3)(9+3))=√(6*12)=6√2(см).

ВК-высота трапеции, значит r=3√2 см.

S(круга)= π (3√2 )²=18π (см²).

Подробнее - на Znanija.com - https://znanija.com/task/36181758#readmore

Похожие вопросы
Предмет: Русский язык, автор: sven605