Предмет: Математика, автор: Sofya311217

1-Как вычислить высоту конуса, зная образующую и радиус основания?
2- Ребро куба равно 3 см. Найти объем и площадь полной поверхности куба.
3- Длина, ширина и высота прямоугольного параллелепипеда соответственно равны: 2см,
3см, 1см. Найти объем и площадь полной поверхности параллелепипеда.
4- Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота
пирамиды равна 6 см. Найти площадь полной поверхности и объем пирамиды.

Ответы

Автор ответа: Pepino
0

Ответ:

Пошаговое объяснение:

1-Как вычислить высоту конуса, зная образующую и радиус основания?

Образующая конуса, высота и радиус основания образуют прямоугольный треугольник.

Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с помощью теоремы Пифагора.

a² = c² - b², a = √(c² - b²).

a - высота, b - радиус, c - образующая.

2- Ребро куба равно 3 см. Найти объем и площадь полной поверхности куба.

Прямоугольный параллелепипед, все грани которого - квадраты, называется кубом.

Все ребра куба равны, а площадь поверхности куба равна сумме площадей шести его граней, т.е. площади квадрата со стороной H умноженной на шесть.

Площадь поверхности куба равна: S = 6 · H², где (H - высота ребра куба).

S = 6 · 3² = 6 * 9 = 54 см².

Объем куба равен кубу его ребра: V=H³, где H - высота ребра куба.

V= 3³ = 27 см³.

3- Длина, ширина и высота прямоугольного параллелепипеда соответственно равны: 2см, 3см, 1см. Найти объем и площадь полной поверхности параллелепипеда.

Параллелепипедом называется призма, основание которой параллелограмм. Параллелепипед имеет шесть граней, и все они — параллелограммы.

Параллелепипед, четыре боковые грани которого — прямоугольники, называется прямым.

Прямой параллелепипед у которого все шесть граней прямоугольники, называется прямоугольным.

Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме площадей трех граней этого параллелепипеда:

S = 2 · (Sa + Sb + Sc) = 2 · (ab + bc + ac), где

a – длина, b – ширина, c – высота параллелепипеда.

S = 2 * (2*3 + 3*1 + 2*1) = 2 * (6 + 3 + 2) = 2 * 11 = 22 см²

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:

V= SH= a·b·c, где

H - высота параллелепипеда, где a – длина, b – ширина, c – высота параллелепипеда.

V= 2 * 3 * 1 = 6 см³

4- Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота пирамиды равна 6 см. Найти площадь полной поверхности и объем пирамиды.

Правильная треугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — правильный треугольник, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.

У правильной треугольной пирамиды в основании лежит равносторонний треугольник со сторонами a, и три боковые грани — равносторонние треугольники с основанием а и бедрами а.

Площадь правильной треугольной пирамиды равна сумме площадей ее основания и трех боковых граней.

S = Sосн + 3•Sбок

Используя формулы площади равностороннего треугольника получим:

S=4\frac{\sqrt{3} }{4} a^{2}

S=4\frac{\sqrt{3} }{4} 8^{2} =110,84 см²

Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S на высоту h.

V=\frac{h*a^{2} }{4\sqrt{3} } , где

a — сторона правильного треугольника - основания правильной треугольной пирамиды.

h — высота правильной треугольной пирамиды

V=\frac{6*8^{2} }{4\sqrt{3} } =55,43см3

Похожие вопросы
Предмет: Литература, автор: полина1665