Предмет: Математика, автор: marynazadoian03

Срочно. Решить интеграл​

Приложения:

Ответы

Автор ответа: artalex74
1

I = \int \dfrac{43x-67}{(x-1)(x^2-x-12)} dx= \int \dfrac{43x-67}{(x-1)(x+3)(x-4)} dx

Представим дробь \dfrac{43x-67}{(x-1)(x+3)(x-4)} в виде суммы дробей \dfrac{a}{x-1}+\dfrac{b}{x+3}+\dfrac{c}{x-4} и найдем a, b и с.

a(x+3)(x-4) + b(x-1)(x-4) + c(x-1)(x+3) = 43x - 67

a(x²-x-12) + b(x²-5x+4) + c(x²+2x-3) = 43x - 67

(a+b+c)x² + (-a-5b+2c)x + (-12a+4b-3c) = 43x - 67

Из свойства единственности многочлена следует, что a+b+c =0,

-a-5b+2c = 43, -12a+4b-3c = -67

\begin {cases} a+b+c=0\\ -a-5b+2c=43 \\ -12a+4b-3c=-67 \end {cases} \Leftrightarrow \begin {cases} a+b+c=0\\ -4b+3c=43 \\ 16b+9c=-67 \end {cases} \Leftrightarrow \begin {cases} a+b+c=0\\ -4b+3c=43 \\ -28b=196 \end {cases} \Leftrightarrow \\ \begin {cases} b=-7\\ c=5 \\ a=2 \end {cases} \Rightarrow \dfrac{43x-67}{(x-1)(x+3)(x-4)}=\dfrac{2}{x-1}-\dfrac{7}{x+3}+\dfrac{5}{x-4}

Вернемся к интегралу:

I=\int (\dfrac{2}{x-1}-\dfrac{7}{x+3}+\dfrac{5}{x-4})dx=\int\dfrac{2}{x-1}dx-\int\dfrac{7}{x+3}dx+\int\dfrac{5}{x-4}dx=\\ \\= 2\ln|x-1|-7\ln|x+3|+5\ln|x-4|+C =\ln \dfrac{(x-1)^2|x-4|^5}{|x+3|^7}+C


marynazadoian03: спасибо, но там x^3(
artalex74: нет. там квадрат. я в графическом редакторе улучшил фото и четко увидел квадрат
marynazadoian03: сильно благодарю, действительно так
artalex74: на здоровье!
Похожие вопросы
Предмет: Алгебра, автор: nastusyromanova