Предмет: Геометрия, автор: yliagleb

3. В треугольнике АВС (рисунок) на стороне AC взята точка K, BK =
= KC = AK, угол AKB на 30° больше угла С. Найдите
угол ABK.​

Ответы

Автор ответа: maximyam89
9

Объяснение:

По условию АК=СК=ВК ⇒  Отрезок ВК - медиана АВС и равна АС:2. Поэтому треугольники АВК и СВК - равнобедренные, углы при АС и при ВС равны.  Примем ∠КСВ=∠СВК=а. Тогда внешний угол при вершине К треугольника СВК угол АКВ=2а=а+60°, поэтому ∠КВС=∠СВК=60°, а ∠АКВ=120°. В равнобедренном ∆ АКВ ∠ВАК=∠АВК=(180°-120°):2=30°

Похожие вопросы
Предмет: Физика, автор: АСТРА68293