Тема: "Модуль"
121.
Определите наклон и направление прямой, если она проходит через следующие точки:
а) происхождение и (2/3; -5/6)
б) (-1/4; 1/9) и (1/3; 1/9)
в) (2a; a) и (8a; 4a), где a ≠ 0.
(1/9, например, - это дробь)
Ответы
Прямая, которая задается уравнением , можно переписать в виде функции , где
Коэффициент отвечает за наклон прямой, равный тангенсу угла , образованного данной прямой и положительным направлением оси , то есть
Если , то график функции возрастает.
Если , то график функции убывает.
Если , то график ни возрастает, ни убывает — имеем прямую , параллельную оси абсцисс.
а) Пусть прямая проходит через две точки: и
Тогда, подставляя соответствующие координаты точек в функцию , получим систему двух линейных уравнений:
Тогда и
— тупой угол наклона
Так как , то график функции убывает.
б) Пусть прямая проходит через две точки: и . Тогда
Тогда и
Так как , то график функции ни возрастает, ни убывает.
в) Пусть прямая проходит через две точки: и , где — параметр. Тогда
Умножим первое уравнение на 4 и получаем:
Тогда и
— острый угол наклона
Так как , то график функции возрастает.