Предмет: Геометрия,
автор: Аноним
Докажите, что сумма квадратов двух медиан прямоугольного треугольника, проведенных к катетам, равна 5/4 квадрата гипотенузы.
Ответы
Автор ответа:
0
ΔАВС, <С=90⁰,АС=в, ВС=а, АВ=с . АМ и ВК медианы , а значит делят стороны пополам.
ΔАСМ ,<С=90⁰,СМ=½а,АС=в, пот. Пифагора АМ²=МС²+АС²=¼а²+в².
Аналогично ВК²=ВС²+СК²=а²+¼в²,тогда
АМ²+ВК²=¼а²+в²+а²+¼в²=1¼а²+1¼в²=5/ 4а²+5/ 4в²=5 /4(а²+в²)=5/ 4(ВС² +АС²)=
=5/ 4АВ², что и требовалось доказать.
Автор ответа:
0
Пусть АВС - исходный треугольник, С - вершина прямого угла, а АЕ и ВD - медианы.
Пусть ВС = а, АС = b. Тогда по теореме Пифагора
ВD² = BC² + CD² = a² + (b/2)² = a² + b²/4
AE² = AC² + CE² = b² + (a/2)² = b² + a²/4
Следовательно
BD² + CE² = a² + b²/4 + b² + a²/4 = 5/4 * (a² + b²) = 5/4 * AB²
Похожие вопросы
Предмет: Алгебра,
автор: alina200730
Предмет: Информатика,
автор: ishbuldin11
Предмет: Другие предметы,
автор: karimovesonka
Предмет: Физика,
автор: maksim89