Предмет: Геометрия, автор: buurdaa

7 КЛАСС

Помогите, пожалуйста!

Угол между боковыми сторонами равнобедренного треугольника равен 120º, боковая сторона - 4 см. Найдите радиус описанной окружности.

Ответы

Автор ответа: dilnoza1235
1

Ответ:Треугольник АВС равнобедренный, следовательно, углы при АС равны (180°-120°):2=30°

По т.синусов

АВ:sin30°=2R

2R=2:1/2=4

R=2 см

--------

Вариант решения:

Соединим вершину В с центром окружности О. 

Т.к. центр описанной окружности лежит на срединном перпендикуляре, ВО⊥АС. ВН-высота и биссектриса ∆ АВС  и  делит угол АВС пополам. 

∠АВО=120°:2=60° 

Углы при основании равнобедренного треугольника АОВ равны. ⇒

 ∆ АОВ - равносторонний. R=AB=2 си

Объяснение:

Похожие вопросы
Предмет: Математика, автор: хищныймозг